Exact Duality of The Dissipative Hofstadter Model on a Triangular Lattice

Research paper by Taejin Lee

Indexed on: 31 Jan '16Published on: 31 Jan '16Published in: High Energy Physics - Theory


We study the dissipative Hofstadter model on a triangular lattice, making use of the $O(2,2;R)$ T-dual transformation of string theory. The $O(2,2;R)$ dual transformation transcribes the model in a commutative basis into the model in a non-commutative basis. In the zero temperature limit, the model exhibits an exact duality, which identifies equivalent points on the two dimensional parameter space of the model. The exact duality also defines magic circles on the parameter space, where the model can be mapped onto the boundary sine-Gordon on a triangular lattice. The model describes the junction of three quantum wires in a uniform magnetic field background. An explicit expression of the equivalence condition, which identifies the points on the two dimensional parameter space of the model by the exact duality, is obtained. It may help us to understand the structure of the phase diagram of the model.