EVI-1 Modulates Arsenic Trioxide induced Apoptosis through JNK signaling pathway in Leukemia Cells.

Research paper by Wenjing W Lang, Jianyi J Zhu, Fangyuan F Chen, Jiayi J Cai, Jihua J Zhong

Indexed on: 26 Nov '18Published on: 26 Nov '18Published in: Experimental Cell Research


High expression of the oncogene ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukemia patients. This study aimed to examine the effects of arsenic trioxide (ATO) on EVI-1 in acute myeloid leukemia (AML). Mononuclear cells were isolated from the bone marrow and peripheral blood of AML patients and healthy donors. EVI-1 expression in hematopoietic cells was evaluated by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). ATO down-regulated EVI-1 mRNA in zebrafish in vivo as well as in primary leukemia cells and THP-1 and K562 cells in vitro. Additionally, ATO treatment induced apoptosis, down-regulated both EVI-1 mRNA and oncoprotein expression, increased the expression of pro-apoptosis proteins, and decreased the expression of anti-apoptotic proteins in leukemia cells in vitro. EVI-1 expression in leukemia cells (THP-1 and K562) transduced with EVI-1 siRNA was significantly reduced. Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of leukemia cell apoptosis. ATO may downregulate EVI-1 mRNA and oncoprotein levels and block the inhibitory effects of EVI-1 on the JNK pathway, which activates the JNK apoptotic pathway, thereby leading to the apoptosis of EVI-1 in AML patients. Copyright © 2018. Published by Elsevier Inc.