Envelopes of commutative rings

Research paper by Rafael Parra, Manuel Saorín

Indexed on: 15 Nov '11Published on: 15 Nov '11Published in: Acta Mathematica Sinica, English Series


Given a significative class ℱ of commutative rings, we study the precise conditions under which a commutative ring R has an ℱ-envelope. A full answer is obtained when ℱ is the class of fields, semisimple commutative rings or integral domains. When ℱ is the class of Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic. The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is the empty class.