Entropy increase in K-step Markovian and consistent dynamics of closed quantum systems.

Research paper by Jochen J Gemmer, Robin R Steinigeweg

Indexed on: 16 May '14Published on: 16 May '14Published in: Physical review. E, Statistical, nonlinear, and soft matter physics


We consider sequences of measurements implemented by positive operator valued measures (POVMs). Starting from the assumption that these sequences may be described as consistent and Markovian, even and especially for closed quantum systems, we identify properties of the equilibrium state that coincide with the properties of typical pure quantum states. We define a physical entropy that converges against the standard entropies in the approach to equilibrium. Furthermore, strict limits to its possible decrease are derived on the basis of Renyi entropies. It is demonstrated that Landauer's principle follows directly from these limits. Since the above assumptions are rather strong, we exemplify the fact that they may nevertheless apply by checking them numerically for some transition paths in a concrete model.