Quantcast

Entanglement dynamics of bipartite system in squeezed vacuum reservoirs

Research paper by Smail Bougouffa, Awatif Hindi

Indexed on: 01 Nov '10Published on: 01 Nov '10Published in: Quantum Physics



Abstract

Entanglement plays a crucial role in quantum information protocols, thus the dynamical behavior of entangled states is of a great importance. In this paper we suggest a useful scheme that permits a direct measure of entanglement in a two-qubit cavity system. It is realized in the cavity-QED technology utilizing atoms as fying qubits. To quantify entanglement we use the concurrence. We derive the conditions, which assure that the state remains entangled in spite of the interaction with the reservoir. The phenomenon of sudden death entanglement (ESD) in a bipartite system subjected to squeezed vacuum reservoir is examined. We show that the sudden death time of the entangled states depends on the initial preparation of the entangled state and the parameters of the squeezed vacuum reservoir.