Quantcast

Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method.

Research paper by Sini S Kuriakose, Biswarup B Satpati, Satyabrata S Mohapatra

Indexed on: 17 May '14Published on: 17 May '14Published in: Physical Chemistry Chemical Physics



Abstract

Cobalt doped ZnO nanodisks and nanorods were synthesized by a facile wet chemical method and well characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, Raman spectroscopy and UV-visible absorption spectroscopy. The photocatalytic activities were evaluated for sunlight driven degradation of an aqueous methylene blue (MB) solution. The results showed that Co doped ZnO nanodisks and nanorods exhibit highly enhanced photocatalytic activity, as compared to pure ZnO nanodisks and nanorods. The enhanced photocatalytic activities of Co doped ZnO nanostructures were attributed to the combined effects of enhanced surface area of ZnO nanodisks and improved charge separation efficiency due to optimal Co doping which inhibit recombination of photogenerated charge carriers. The possible mechanism for the enhanced photocatalytic activity of Co doped ZnO nanostructures is tentatively proposed.