Enhanced dynamical entanglement transfer with multiple qubits

Research paper by A. Serafini, M. Paternostro, M. S. Kim, S. Bose

Indexed on: 09 Jan '06Published on: 09 Jan '06Published in: Quantum Physics


We present two strategies to enhance the dynamical entanglement transfer from continuous variable (CV) to finite dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system is sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between microscopic and macroscopic behaviours of composite finite dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing to probabilistically convert CV entanglement into `almost perfect' Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.