Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1.

Research paper by Kazuya K Kusama, Rulan R Bai, Keigo K Nakamura, Sayaka S Okada, Jiro J Yasuda, Kazuhiko K Imakawa

Indexed on: 16 Feb '17Published on: 16 Feb '17Published in: PloS one


In ruminants, Interferon tau (IFNT) is the pregnancy recognition protein produced by the mononuclear trophectoderm of the conceptus, and is secreted into the uterine lumen during the peri-attachment period. In our previous study, the high-throughput RNA sequencing (RNA-seq) data obtained from bovine conceptuses during the peri-attachment period identified two IFNT mRNAs, IFNT2 and IFNTc1. However, how each of these IFNT variants regulates endometrial gene expression has not been characterized. Using RNA-seq analysis, we evaluated how IFNT2 and IFNTc1 affected transcript expression in primary bovine endometrial epithelial cells (EECs). IFNT treatment induced 348 differentially expressed genes (DEGs); however, there are few DEGs in IFNT2 or IFNTc1 treated EECs, indicating that IFNT2-induced DEGs were similar to those induced by IFNTc1 treatment. In in silico analysis, we identified four IFNT2- and IFNTc1-induced pathways: 1) type II interferon signaling, 2) proteasome degradation, 3) type III interferon signaling, and 4) DNA damage response. We further demonstrated that IFNT2 and IFNTc1 up-regulated several transcription factors, among which forkhead box S1 (FOXS1) was identified as the most highly expressed gene. Furthermore, the knockdown of FOXS1 in IFNT2- or IFNTc1-treated EECs similarly down-regulated 9 genes including IRF3 and IRF9, and up-regulated 9 genes including STAT1, STAT2, and IRF8. These represent the first demonstration that effects of each IFNT on EECs were studied, and suggest that endometrial response as well as signaling mechanisms were similar between two IFNT variants existed in utero.