Quantcast

Electronics, Vol. 8, Pages 186: RPL Routing Protocol Performance in Smart Grid Applications Based Wireless Sensors: Experimental and Simulated Analysis

Research paper by Shimaa A. Abdel Hakeem, Anar A. Hady, Kim

Indexed on: 11 Feb '19Published on: 05 Feb '19Published in: Electronics



Abstract

The Advanced Metering Infrastructure (AMI) is one of the Smart Grid (SG) applications that used to upgrade the current power system by proposing a two-way communication system to connect the smart meter devices at homes with the electric control company. The design and deployment of an efficient routing protocol solution for AMI systems are considered to be a critical challenge due to the constrained resources of the smart meter nodes. IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was recently standardized by the IETF and originally designed to satisfy the routing requirements of lossy and low power networks like wireless sensors (WSN). We have two kinds of AMI applications, on one hand AMI based WSN and on the other hand AMI based PLC communication. In this paper, we proposed a real and simulated implementation of RPL behavior with proper modifications to support the AMI based WSN routing requirements. We evaluate RPL performance using 140 nodes from the wireless sensor testbed (IoT-LAB) and 1000 nodes using Cooja simulator measure RPL performance within medium and high-density networks. We adopted two routing metrics for path selection: First one is HOP Count (HC) and the second is Expected Transmission Unit (ETX) to evaluate RPL performance in terms of packet delivery ratio; network latency; control traffic overhead; and power consumption. Our results illustrate that routes with ETX calculations in low and medium network densities outperform routes using HC and the performance decreases as the network becomes dense. However, Cooja implementation results provides an average reasonable performance for AMI with high-density networks; still many RPL nodes suffering from high packet loss rates, network congestion and many retransmissions due to the selection of optimal paths with highly unreliable links.