Electrokinetic parameters of colloidal model systems: analysis and comparison between dilute and concentrated dispersions.

Research paper by Omar O El-Gholabzouri, Miguel Angel MA Cabrerizo-Vílchez, Roque R Hidalgo-Alvarez

Indexed on: 01 Nov '05Published on: 01 Nov '05Published in: Journal of Colloid and Interface Science


In the last decades, the interest of many scientists has been focused on the atypical electrokinetic behavior of charged colloidal systems since several studies have shown, in most cases; it is not so ideal as expected. Particularly, two interesting phenomena have not been clearly explained yet. First, the zeta potential magnitude does not decrease monotonically with increasing ionic strength, as expected according to the Gouy-Chapmann model predicts. Second, the zeta potential obtained from different techniques shows discrepancies. More specifically, the zeta potential obtained from streaming potential is lower (in absolute value) than that measured through electrophoretic mobility. However, a recent work has pointed out that these discrepancies seem to disappear if certain conditions (related with the surface charge density) are satisfied. This work also revealed that unexpected results are found when the electric conductivity was used. Spherical polystyrene particles of appropriate particle size and charge density are employed as polymeric colloidal model in the present work. Common and adequate models are used to make clear and easy our theoretical analysis and its interpretation. To test the surface conductance and ionic mobility effects at the solid-liquid interface, both water medium and alcohol-water mixtures are used.