Electrochemical fabrication and magnetic properties of Fe7Co3 alloy nanowire array

Research paper by Jian Yang, Chunxiang Cui, Wei Yang, Bing Hu, Jibing Sun

Indexed on: 07 Dec '10Published on: 07 Dec '10Published in: Journal of Materials Science


A new type of magnetic material, Fe7Co3 nanowires, was successfully synthesized for the first time via a simple electrodeposition method. Highly uniform, self-ordered porous anodic aluminum oxide (AAO) membranes were prepared by the way of electrochemical. Fe7Co3 alloy nanowire arrays were fabricated in the porous alumina template in an aqueous solution of FeCl2 and CoCl2 by direct current electrodepositing. The microstructures of nanowires and AAO template were characterized by XRD, SEM, and TEM. The results show that a single Fe7Co3 nanowire is 40 nm in width and 2.5 µm in length with a preferred crystal face (110) during growing. The Fe7Co3 nanowire arrays have uniaxial magnetic anisotropy with easy magnetization direction along the nanowire axis due to the large shape anisotropy. It also shows that Fe7Co3 nanowire is a well-soft magnetic phase compared with Fe nanowires. It illustrates that Fe7Co3 possess higher saturation magnetization.