Quantcast

Efficient generation of ideals in a discrete Hodge algebra

Research paper by Manoj K. Keshari, Md. Ali Zinna

Indexed on: 08 Nov '16Published on: 08 Nov '16Published in: arXiv - Mathematics - Commutative Algebra



Abstract

Let $R$ be a commutative Noetherian ring and $D$ be a discrete Hodge algebra over $R$ of dimension $d>\text{dim}(R)$. Then we show that (i) the top Euler class group $E^d(D)$ of $D$ is trivial. (ii) if $d>\text{dim}(R)+1$, then $(d-1)$-st Euler class group $E^{d-1}(D)$ of $D$ is trivial.