Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.

Research paper by Benjamin J BJ Privett, Steven T ST Nutz, Mark H MH Schoenfisch

Indexed on: 18 Nov '10Published on: 18 Nov '10Published in: Biofouling


This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.