Quantcast

Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury.

Research paper by Matthias M Oertel, Daniel F DF Kelly, Jae Hong JH Lee, David L DL McArthur, Thomas C TC Glenn, Paul P Vespa, W John WJ Boscardin, David A DA Hovda, Neil A NA Martin

Indexed on: 27 Nov '02Published on: 27 Nov '02Published in: Journal of neurosurgery



Abstract

Hyperventilation therapy, blood pressure augmentation, and metabolic suppression therapy are often used to reduce intracranial pressure (ICP) and improve cerebral perfusion pressure (CPP) in intubated head-injured patients. In this study, as part of routine vasoreactivity testing, these three therapies were assessed in their effectiveness in reducing ICP.Thirty-three patients with a mean age of 33 +/- 13 years and a median Glasgow Coma Scale (GCS) score of 7 underwent a total of 70 vasoreactivity testing sessions from postinjury Days 0 to 13. After an initial 133Xe cerebral blood flow (CBF) assessment, transcranial Doppler ultrasonography recordings of the middle cerebral arteries were obtained to assess blood flow velocity changes resulting from transient hyperventilation (57 studies in 27 patients), phenylephrine-induced hypertension (55 studies in 26 patients), and propofol-induced metabolic suppression (43 studies in 21 patients). Changes in ICP, mean arterial blood pressure (MABP), CPP, PaCO2, and jugular venous oxygen saturation (SjvO2) were recorded. With hyperventilation therapy, patients experienced a mean decrease in PaCO2 from 35 +/- 5 to 27 +/- 5 mm Hg and in ICP from 20 +/- 11 to 13 +/- 8 mm Hg (p < 0.001). In no patient who underwent hyperventilation therapy did SjvO2 fall below 55%. With induced hypertension, MABP in patients increased by 14 +/- 5 mm Hg and ICP increased from 16 +/- 9 to 19 +/- 9 mm Hg (p = 0.001). With the aid of metabolic suppression, MABP remained stable and ICP decreased from 20 +/- 10 to 16 +/- 11 mm Hg (p < 0.001). A decrease in ICP of more than 20% below the baseline value was observed in 77.2, 5.5, and 48.8% of hyperventilation, induced-hypertension, and metabolic suppression tests, respectively (p < 0.001 for all comparisons). Predictors of an effective reduction in ICP included a high PaCO2 for hyperventilation, a high study GCS score for induced hypertension, and a high PaCO2 and a high CBF for metabolic suppression.Of the three modalities tested to reduce ICP, hyperventilation therapy was the most consistently effective, metabolic suppression therapy was variably effective, and induced hypertension was generally ineffective and in some instances significantly raised ICP. The results of this study suggest that hyperventilation may be used more aggressively to control ICP in head-injured patients, provided it is performed in conjunction with monitoring of SjvO2.