Effects of maternal intravenous nicotine administration on locomotor behavior in pre-weanling rats.

Research paper by Mark G MG LeSage, Erianne E Gustaf, Matthew B MB Dufek, Paul R PR Pentel

Indexed on: 05 Dec '06Published on: 05 Dec '06Published in: Pharmacology Biochemistry and Behavior


Maternal tobacco use is associated with adverse developmental outcomes in offspring, including hyperactivity. Animal studies attempting to model this phenomenon have primarily used continuous s.c. nicotine infusion as the method of nicotine administration, which does not model the intermittent bolus delivery of nicotine associated with smoking in humans. The purpose of the present experiment was to examine the locomotor activity of pre-weanling offspring of pregnant rats exposed to an i.v. nicotine dosing protocol that approximates the pattern of nicotine exposure in moderate to heavy smokers. Pregnant rats were administered an i.v. bolus of 0.03 mg/kg nicotine (N=13) or saline (N=10) every 14 min for 16 h/day, resulting in a total daily dose of 2 mg/kg (base), from gestational day 4 to delivery. Pups from each litter were tested for spontaneous locomotor activity on postnatal days (PND) 19-21 and nicotine-induced locomotor activity on PND 22. Mean birth weight was significantly lower in nicotine-exposed pups compared to controls, but body weights were equivalent between groups by the time of behavioral testing. Mean total distance traveled, vertical counts, and stereotypy counts were lower on PND 19 in nicotine-exposed pups compared to controls, but only the difference in mean stereotypy counts was statistically significant. Within-session analysis revealed that both distance traveled and stereotypy were significantly decreased in nicotine-exposed pups in the first 5 min of the session on PND 19. Total time spent in the center of the field was also lower in nicotine-exposed pups. Nicotine-induced increases in activity on PND 22 did not differ according to gestational exposure. These findings demonstrate that prenatal nicotine exposure in a model that mimics the pattern of nicotine exposure from cigarette smoking in humans results in offspring that exhibit low birth weight and hypoactivity in a novel environment.