Quantcast

Effects of convective transport on chemical signal propagation in epithelia.

Research paper by Marek M Nebyla, Michal M Přibyl, Igor I Schreiber

Indexed on: 13 Mar '12Published on: 13 Mar '12Published in: Biophysical Journal



Abstract

We study effects of convective transport on a chemical front wave representing a signal propagation at a simple (single layer) epithelium by means of mathematical modeling. Plug flow and laminar flow regimes were considered. We observed a nonmonotonous dependence of the propagation velocity on the ligand receptor binding constant under influence of the convective transport. If the signal propagates downstream, the region of high velocities becomes much broader and spreads over several orders of magnitude of the binding constant. When the convective transport is oriented against the propagating signal, either velocity of the traveling front wave is slowed down or the traveling front wave can stop or reverse the direction of propagation. More importantly, chemical signal in epithelial systems influenced by the convective transport can propagate almost independently of the ligand-receptor binding constant in a broad range of this parameter. Furthermore, we found that the effects of the convective transport becomes more significant in systems where either the characteristic dimension of the extracellular space is larger/comparable with the spatial extent of the ligand diffusion trafficking or the ligand-receptor binding/ligand diffusion rate ratio is high.