Effect of ultra-fine gold particle addition to metal oxides in ethylene oxidation

Research paper by Ho-Geun Ahn, Do-Jin Lee

Indexed on: 01 Jul '02Published on: 01 Jul '02Published in: Research on Chemical Intermediates


Oxidation of ethylene was carried out over alumina-supported metal oxide catalysts and highly dispersed gold catalysts, respectively, under atmospheric pressure. The ethylene was completely oxidized to produce carbon dioxide and water with both metal oxide and gold catalysts. The activity of gold catalyst prepared by deposition method was much higher than that of supported metal oxide catalysts. Ultra-fine gold particles on Co3O4 were more active than on Al2O3. Fe2O3/Al2O3 and MnO2/Al2O3 catalysts were more active than MoO3/Al2O3 catalyst. The activity of the supported metal oxide catalysts was greatly enhanced by addition of gold particles. It was therefore considered that gold particles promote dissociative adsorption of oxygen and the adsorbed oxygen reacts with adsorbed ethylene on support adjacent to the active site.