Quantcast

Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films

Research paper by Naoki Hatsuta, Daichi Takemori, Masayuki Takashiri

Indexed on: 27 May '16Published on: 25 May '16Published in: Journal of Alloys and Compounds



Abstract

We investigated the effect of thermal annealing on structural and thermoelectric properties of p-type antimony telluride (Sb2Te3) thin films fabricated on a stainless steel (SUS304) substrate by electrodeposition. Antimony telluride thin films were annealed for 1 h at temperatures between 200 and 400 °C. We observed that the as-deposited thin film and thin films annealed at temperatures less than 250 °C possessed a stoichiometric atomic composition (Sb:Te = 40:60) with no impurities from the substrate. At the annealing temperature of 300 °C, we observed a certain amount of impurities (Fe, Cr, Ni) in the thin film. The Seebeck coefficient was decreased but the electrical conductivity was increased for films treated at 300 °C. As a result, the thin film exhibited a maximum power factor of 13.6 μW/(cm·K2). On further increasing the annealing temperature to 400 °C, the film structure and thermoelectric properties were drastically changed. The impurity concentration in the thin film reached approximately 50 at%. The crystal structure of Sb2Te3 completely disappeared, and instead, other chemical compounds formed by alloying the elements of the thin film and the substrate were observed.

Figure 10.1016/j.jallcom.2016.05.268.0.jpg
Figure 10.1016/j.jallcom.2016.05.268.1.jpg
Figure 10.1016/j.jallcom.2016.05.268.2.jpg
Figure 10.1016/j.jallcom.2016.05.268.3.jpg
Figure 10.1016/j.jallcom.2016.05.268.4.jpg
Figure 10.1016/j.jallcom.2016.05.268.5.jpg