Effect of seasonal rainfall, N fertilizer and tillage on N utilization by dryland wheat in a semi-arid environment

Research paper by Y. K. Soon, S. S. Malhi, Z. H. Wang, S. Brandt, J. J. Schoenau

Indexed on: 08 Apr '08Published on: 08 Apr '08Published in: Nutrient Cycling in Agroecosystems


Crop yield and N uptake in semi-arid environments are typically limited by available water and/or N. Since remobilization of shoot N is a major source of grain N, an understanding of how it is influenced by soil N and water supply, and tillage, is required. In 2003, 2005 and 2006, we determined the influence of N supply (0 or 60 kg fertilizer N ha−1) and tillage [no tillage (NT) or conventional tillage (CT)] on N translocation and N use efficiency of wheat (Triticum aestivum L.) at Scott, Saskatchewan, Canada. Wheat production and N use, and their response to N fertilizer or tillage, were largely influenced by water availability. Wheat N uptake and remobilization were strongly correlated with normalized rainfall in May and June (r = 0.985 and 0.935, respectively, both significant at the P = 0.01 level). In a moisture-stressed year (2003), grain yield was higher under NT than CT, and fertilizer N was ineffective due to low N demand. Nitrogen application increased shoot dry matter (DM), and N uptake and remobilization only in 2006, a year with near-average precipitation. In a wet and cool year (2005), wheat showed no response to tillage or fertilizer N as available soil N was high. Root DM and N content varied slightly only with year or treatment. When N uptake at heading was substantially greater than 100 kg ha−1, N loss occurred during plant senescence, and it was higher with N fertilization: in 2005 and 2006, N-fertilized wheat lost 33–35 kg N ha−1. Nitrogen use efficiency was: (1) higher under NT than CT, due to higher N utilization efficiency, (2) higher with no added N due to higher uptake and utilization efficiencies, and (3) low when water availability was low or excessive. Tillage system had little effect on the uptake, remobilization or loss of N. Fertilizer N application in a year with average rainfall increased wheat production, N accumulation and remobilization, and N loss during senescence.