Quantcast

Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299.

Research paper by Huaqi H Wang, Min M Li, Ren R Zhang, Yuanyuan Y Wang, Wenqiao W Zang, Yunyun Y Ma, Guoqiang G Zhao, Guojun G Zhang

Indexed on: 07 Jun '13Published on: 07 Jun '13Published in: Tumor Biology



Abstract

MicroRNAs are small non-coding RNAs that may also function as oncogenes and tumor-suppressor genes, as the abnormal expression of microRNAs is associated with various human tumors. However, the effect of miR-335 on the lung cancer cells remains unclear. The aim of the paper was to study the expression of miR335 in non-small cell lung cancer (NSCLC) and miR335's relation to the metastasis, invasion, and apoptosis in lung cancer cells A549 and H1299. qRT-PCR was used to identify the miR-335 expression. The effects of miR-335 on cell proliferation, apoptosis, and invasion were further analyzed. Luciferase reporter assay and Western blot were to verify Bcl-w and SP1 as potential major target genes of miR-335. Finally, the effect of Bcl-w on miR-335-induced cell survival was determined. Our results showed that miR-335 expression was significantly lower in NSCLC tissue, which was significantly associated with lymph node metastasis. In contrast to cells in blank and negative control groups, incidence of apoptosis was significantly higher (P < 0.05) and the number of cells migrating through matrigel was significantly lower (P < 0.05) in miR-335 mimics transfected group. Western blot and luciferase reporter assay demonstrated that miR-335 could bind to the putative binding sites in Bcl-w (or SP1) mRNA 3'-untranslated region to visibly lower the expression of Bcl-w (or SP1). The introduction of Bcl-w cDNA without 3'-untranslated region abrogated miR-335-induced cell survival. These results indicated that upregulation of miR-335 can simultaneously suppress the invasiveness and promote apoptosis of lung cancer cell A549 and H1299 by targeting Bcl-w and SP1. Therefore, miR-335 may be a potential therapeutic target in NSCLC treatment.