Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from a bread wheat cross.

Research paper by M T MT Nieto-Taladriz, M R MR Perretant, M M Rousset

Indexed on: 01 Apr '94Published on: 01 Apr '94Published in: Theoretical and Applied Genetics


The storage proteins of 64 F2-derived F6 recombinant inbred lines (RILs) from the bread wheat cross 'Prinqual'/'Marengo' were analyzed. Parents differed at four loci: Gli-B1 (coding for gliadins), Glu-B1 (coding for HMW glutenin subunits), Glu-A3/Gli-A1 (coding for LMW glutenin subunits/gliadins) and Glu-D3 (coding for LMW glutenin subunits). The effect of allelic variation at these loci on tenacity, extensibility and dough strength as measured by the Chopin alveograph was determined. Allelic differences at the Glu-B1 locus had a significant effect on only tenacity. None of the allelic differences at either the Glu-A3/Gli-A1 or Glu-D3 loci had a significant effect on quality criteria. Allelic variation at the Gli-B1 locus significantly affected all of the dough properties. Epistatic effects between some of the loci considered contributed significantly to the variation in dough quality. Additive and epistatic effects each accounted for 15% of the variation in tenacity. Epistasis accounted for 15% of the variation in extensibility, whereas additive effects accounted for 4%. Epistasis accounted for 14% of the variation in dough strength, and additivity for 9%. The relative importance of epistatic effects suggest that they should be included in predictive models when breeding for breadmaking quality.