Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films.

Research paper by Weijun W Yang, Guochuang G Qi, José Maria JM Kenny, Debora D Puglia, Piming P Ma

Indexed on: 21 Jun '20Published on: 21 Jun '20Published in: Polymers


In this work, PVA nanocomposite films containing cellulose nanocrystals (CNC) and different amounts of lignin nanoparticles (LNP), prepared via a facile solvent cast method, were crosslinked by adding glutaraldehyde (GD). The primary objective was to investigate the effects of crosslinker and bio-based nanofillers loading on thermal, mechanical, antioxidant and water barrier behaviour of PVA nanocomposite films for active food packaging. Thermogravimetric analysis showed improved thermal stability, due to the strong interactions between LNP, CNC and PVA in the presence of GD, while Wide-angle X-ray diffraction results confirmed a negative effect on crystallinity, due to enhanced crosslinking interactions between the nanofillers and PVA matrix. Meanwhile, the tensile strength of PVA-2CNC-1LNP increased from 26 for neat PVA to 35.4 MPa, without sacrificing the ductility, which could be explained by a sacrificial hydrogen bond reinforcing mechanism induced by spherical-like LNP. UV irradiation shielding effect was detected for LNP containing PVA films, also migrating ingredients from PVA nanocomposite films induced radical scavenging activity (RSA) in the produced films in presence of LNP. Furthermore, PVA-CNC-LNP films crosslinked by GD showed marked barrier ability to water vapour.