Early kynurenine pathway activation following cardiac arrest in rats, pigs, and humans.

Research paper by Giuseppe G Ristagno, Michael M Fries, Laura L Brunelli, Francesca F Fumagalli, Renzo R Bagnati, Ilaria I Russo, Lidia L Staszewsky, Serge S Masson, Giovanni G Li Volti, Agata A Zappalà, Matthias M Derwall, Anne A Brücken, Roberta R Pastorelli, Roberto R Latini

Indexed on: 19 Jun '13Published on: 19 Jun '13Published in: Resuscitation


Kynurenine pathway (KP) is a major route of the tryptophan (TRP) catabolism. In the present study, TRP and KP metabolites concentrations were measured in plasma from rats, pigs and humans after cardiac arrest (CA) in order to assess KP activation and its potential role in post-resuscitation outcome.Plasma was obtained from: (A) 24 rats, subjected to 6 min CA and 6 min of cardiopulmonary resuscitation (CPR); (B) 10 pigs, subjected to 10 min CA and 5 min CPR; and (C) 3 healthy human volunteers and 5 patients resuscitated from CA. KP metabolites were quantified by liquid chromatography multiple reaction monitoring mass spectrometry. Assessments were available at baseline, and 1-4h, and 3-5 days post-CA.KP was activated after CA in rats, pigs, and humans. Decreases in TRP occurred during the post-resuscitation period and were accompanied by significant increases in its major metabolites, 3-hydroxyanthranilic acid (3-HAA) and kynurenic acid in each species, that persisted up to 3-5 days post-CA (p<0.01). In rats, changes in KP metabolites reflected changes in post-resuscitation myocardial function. In pigs, changes in TRP and increases in 3-HAA were significanlty related to the severity of cerebral histopathogical injuries. In humans, KP activation was observed, together with systemic inflammation. Post-CA increases in 3-HAA were greater in patients that did not survive.In this fully translational investigation, the KP was activated early following resuscitation from CA in rats, pigs, and humans, and might have contributed to post-resuscitation outcome.

More like this: