Quantcast

Dynamics of super quantum discord and optimal dense coding in quantum channels

Research paper by F Mirmasoudi, S Ahadpour

Indexed on: 21 Jul '18Published on: 16 Jul '18Published in: Journal of physics. A, Mathematical and theoretical



Abstract

Quantum discord (QD), super quantum discord (SQD) and optimal dense coding at entangled states of three types of quantum channels, are investigated. The used models include: two-qubit spin squeezing, the two-qubit Heisenberg XYZ model with decoherency and the Jaynes–Cummings model. In the first two models the quantum correlations and the optimal dense coding capacity are calculated in terms of channel parameters, system initial conditions and decoherency rate. It has been found that valid dense coding can exist, although there is no trace of entanglement in the quantum channel. In contrast, despite the presence of entanglement states in the system, there may be no dense coding capacity. We investigate the effects of cavity Fock states on quantum correlations and optimal dense coding in the Jaynes–Cummings model. Cavity Fock states are found to be effective for quantum correlations and optimal dense coding. The common result of all three models is that the dynamic properties of S...