Quantcast

Dynamic anisotropy and heterogeneity of polystyrene thin films as studied by inelastic neutron scattering.

Research paper by R R Inoue, T T Kanaya, K K Nishida, I I Tsukushi, J J Taylor, S S Levett, B J BJ Gabrys

Indexed on: 04 Sep '07Published on: 04 Sep '07Published in: The European Physical Journal E



Abstract

We studied the dynamic anisotropy and heterogeniety of polystyrene thin films in glassy state with inelastic neutorn scattering. Adjusting the scattering vector to the directions parallel and perpendicular to the film surface, we observed the elastic scattering intensities as a function of temperature. It was found for the 200 A film that the elastic intesity decreased with increasing temperature more rapidly in the perpendicular direction than in the pararell direction, showing the higher mobility in the perpendicular direction. However, such dynamical anisotropy was not observed in the 1000 A film. The decrease in the mobility was observed with the film thickness in both the directions. These results were explained in terms of an interface hard layer. We also evelauated the dynamical heterogeniety from the non-Gaussian parameter A0, which increased with decreasing the film thickness, showing the increase in the dynamical heterogeneity. Assuming a simple bi-layer model consisting of the interface hard layer and the bulk-like layer, we analyzed the thickness dependence of the non-Gaussian parameter A0 and the mean square displacement (u2) to find that the hard layer has a thickness of approximately 130 A and a mean square displacement of approximately 0.018 A2 at 230 K.