Dopamine D1 and D2 receptor-mediated acute and long-lasting behavioral effects of glial cell line-derived neurotrophic factor administered into the striatum.

Research paper by S S Kobayashi, S O SO Ogren, B J BJ Hoffer, L L Olson

Indexed on: 08 Jan '99Published on: 08 Jan '99Published in: Experimental Neurology


To determine the differences in behavioral effects between intrastriatal and intracerebroventricular glial cell-derived neurotrophic factor (GDNF) administration, spontaneous locomotor activity was measured after intrastriatal or intracerebroventricular injection of GDNF (10 microg) in normal adult rats with implanted guide cannulae. In addition, the distribution of GDNF after intracerebral injection was studied immunohistochemically. Intrastriatal administration of GDNF significantly increased rearing behavior 3-4 h after injection. Increases in all three aspects of locomotor activity (motility, locomotion, and rearing) were most pronounced 3 days after intrastriatal injection, and they lasted for several days. This hyperactivity was blocked by the selective dopamine D1 receptor antagonist SCH22390 and by the selective D2 receptor antagonist raclopride at doses of the dopamine receptor antagonists, which by themselves did not affect spontaneous locomotor activity. These results suggest that GDNF has both acute and long-lasting pharmacological effects on dopamine neurons in adult animals and stimulates locomotor activity by activating both dopamine D1 and D2 receptors. On the other hand, intracerebroventricular administration of the same dose of GDNF failed to increase locomotor activity at any time during the test period (12 days). The immunohistochemical study demonstrated widespread distribution of GDNF in the entire body of the striatum within 24 h after intrastriatal injection. It also revealed deep penetration of GDNF from the ventricular space into the brain parenchyma after intracerebroventricular injection. GDNF-immunoreactive neuronal cell bodies were seen in the ipsilateral substantia nigra pars compacta most frequently 6 h after intrastriatal injection. The number of such cell bodies after intracerebroventricular administration, on the other hand, was much lower than that seen after intrastriatal administration. Taken together, these data suggest that intrastriatal administration of GDNF is an effective approach for affecting DA transmission. Long-lasting behavior effects are mediated via dopamine D1 and D2 receptors. Higher doses of GDNF would probably be needed using the intracerebroventricular route as compared to intraparenchymal delivery to exert effects on the nigrostriatal system in Parkinson's disease patients.