DjA1 maintains Golgi integrity via interaction with GRASP65.

Research paper by Jie J Li, Danming D Tang, Stephen C SC Ireland, Yanzhuang Y Wang

Indexed on: 20 Dec '18Published on: 20 Dec '18Published in: Molecular biology of the cell


In mammalian cells, the Golgi Re-Assembly Stacking Protein of 65 kDa (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers. To better understand its function and regulation, we used biochemical methods to identify the DnaJ homolog subfamily A member 1 (DjA1) as a novel GRASP65-binding protein. In cells, depletion of DjA1 resulted in Golgi fragmentation, short and improperly aligned cisternae, and delayed Golgi reassembly after nocodazole washout. In vitro, immunodepletion of DjA1 from interphase cytosol reduced its activity to enhance GRASP65 oligomerization and Golgi membrane fusion, while adding purified DjA1 enhanced GRASP65 oligomerization. DjA1 is a co-chaperone of Heat shock cognate 71 kDa protein (Hsc70), but the activity of DjA1 in Golgi structure formation is independent of its co-chaperone activity or Hsc70, rather, through DjA1-GRASP65 interaction to promote GRASP65 oligomerization. Thus, DjA1 interacts with GRASP65 to enhance Golgi structure formation through the promotion of GRASP65 trans-oligomerization.