Dissipation in a simple model of a topological Josephson junction.

Research paper by Paul P Matthews, Pedro P Ribeiro, Antonio M AM García-García

Indexed on: 06 Jul '14Published on: 06 Jul '14Published in: Physical review letters


The topological features of low-dimensional superconductors have created a lot of excitement recently because of their broad range of applications in quantum information and their potential to reveal novel phases of quantum matter. A potential problem for practical applications is the presence of phase slips that break phase coherence. Dissipation in nontopological superconductors suppresses phase slips and can restore long-range order. Here, we investigate the role of dissipation in a topological Josephson junction. We show that the combined effects of topology and dissipation keep phase and antiphase slips strongly correlated so that the device is superconducting even under conditions where a nontopological device would be resistive. The resistive transition occurs at a critical value of the dissipation that is 4 times smaller than that expected for a conventional Josephson junction. We propose that this difference could be employed as a robust experimental signature of topological superconductivity.