Discrete unified gas kinetic scheme with force term for incompressible fluid flows

Research paper by Chen Wu, Baochang Shi, Zhenhua Chai, Peng Wang

Indexed on: 22 Nov '14Published on: 22 Nov '14Published in: Physics - Fluid Dynamics


The discrete unified gas kinetic scheme (DUGKS) is a finite-volume scheme with discretization of particle velocity space, which combines the advantages of both lattice Boltzmann equation (LBE) method and unified gas kinetic scheme (UGKS) method, such as the simplified flux evaluation scheme, flexible mesh adaption and the asymptotic preserving properties. However, DUGKS is proposed for near incompressible fluid flows, the existing compressible effect may cause some serious errors in simulating incompressible problems. To diminish the compressible effect, in this paper a novel DUGKS model with external force is developed for incompressible fluid flows by modifying the approximation of Maxwellian distribution. Meanwhile, due to the pressure boundary scheme, which is wildly used in many applications, has not been constructed for DUGKS, the non-equilibrium extrapolation (NEQ) scheme for both velocity and pressure boundary conditions is introduced. To illustrate the potential of the proposed model, numerical simulations of steady and unsteady flows are performed. The results indicate that the proposed model can reduce the compressible effect efficiently against the original DUGKS model, and the NEQ scheme fits well with our model as they are both of second-order accuracy. We also implement the proposed model in simulating the three dimensional problem: cubical lid-driven flow. The comparisons of numerical solutions and benchmarks are presented in terms of data and topology. And the motion pattern of the fluid particles in a specific area is characterized for the steady-state cubical lid-driven flows.