Differential introgression and effective size of marker type influence phylogenetic inference of a recently divergent avian group (Phasianidae: Tympanuchus).

Research paper by Stephanie J SJ Galla, Jeff A JA Johnson

Indexed on: 03 Jan '15Published on: 03 Jan '15Published in: Molecular Phylogenetics and Evolution


Life history strategies can influence the effective population size (Ne) of loci differently based on their mode of inheritance. Recognizing how this may affect the rate of lineage sorting among marker types is important for studies focused on resolving phylogenetic relationships among recently divergent taxa. In this study, we use gene tree, coalescent-based species tree, and isolation-with-migration analyses to explore the differences between marker types (autosomal, Z-linked, and mitochondrial) in resolving phylogenetic relationships among North American prairie grouse (Tympanuchus). We found that Z-linked loci were more likely to identify monophyletic relationships among prairie grouse species compared to autosomal and mtDNA loci in both species and gene tree analyses, with species tree analyses outperforming gene trees. These results were further supported with isolation-with-migration analyses, where Z-linked loci largely followed a strict isolation model while autosomal loci were more likely to fit a model with gene flow between species following population divergence. While accounting for differences in inheritance pattern (or Ne) for marker type, results suggest that additional factors, such as strong sexual selection and sex-biased introgression (i.e., male-biased postzygotic hybrid behavioral isolation or "unsexy son"), may further explain the decreased diversity levels and increased rate of lineage sorting observed with the Z-linked loci relative to autosomal and mtDNA loci. In fact, to our knowledge no hybrid male prairie grouse have been observed breeding in the wild, yet hybrid females along with backcross females are known to produce viable offspring. Overall, this study highlights that more work is needed to determine how complex models of gene flow (i.e., sex biased introgression) and differences in the effective size among marker types based on differing life history strategies influence divergence date estimation and species delimitation.