diff-SAT -- A Software for Sampling and Probabilistic Reasoning for SAT and Answer Set Programming

Research paper by Matthias Nickles

Indexed on: 09 Jan '21Published on: 03 Jan '21Published in: arXiv - Computer Science - Artificial Intelligence


This paper describes diff-SAT, an Answer Set and SAT solver which combines regular solving with the capability to use probabilistic clauses, facts and rules, and to sample an optimal world-view (multiset of satisfying Boolean variable assignments or answer sets) subject to user-provided probabilistic constraints. The sampling process minimizes a user-defined differentiable objective function using a gradient descent based optimization method called Differentiable Satisfiability Solving ($\partial\mathrm{SAT}$) respectively Differentiable Answer Set Programming ($\partial\mathrm{ASP}$). Use cases are i.a. probabilistic logic programming (in form of Probabilistic Answer Set Programming), Probabilistic Boolean Satisfiability solving (PSAT), and distribution-aware sampling of model multisets (answer sets or Boolean interpretations).