Quantcast

Determination of 0.1 to 1000 micro g/ml cadmium in a hydrometallurgical zinc refining process stream by a flow injection technique with computer controlled injection method.

Research paper by Y Y Hayashibe, Y Y Sayama, K K Oguma

Indexed on: 01 May '96Published on: 01 May '96Published in: Analytical and Bioanalytical Chemistry



Abstract

A computer-controlled flow injection system was developed for the determination of cadmium in a hydrometallurgical zinc refining process stream. An anion-exchange method in acidic potassium iodide medium was used for the on-line separation of cadmium from the matrix zinc. 1-(4-Nitrophenyl)-3-(4-phenylazophenyl)triazene (Cadion) was used as the chromogenic reagent for the spectrophotometric detection of cadmium. In order to expand the dynamic range of the flow injection - spectrophotometry, a computer-aided time-based variable-volume injection method has been employed for the introduction of the sample into the flow injection system. Samples ranging from 0.56 to 350 microl can be delivered by controlling the time period of the sample introduction valve and the flow rate of the carrier solution. The system permits a throughput of 5 samples per hour. The reproducibility has been proven to be satisfactory with a relative standard deviation of less than 6.2% (sample injected: 0.56 microl of 850 microg Cd/ml; n=100) and 5.0% (350 microl of 0.14 microg Cd/ml; n=5). The determination limit was 20 microg Cd/ml with 0.56 microl sample injection and 0.05 microg Cd/ml with 350 microl sample injection (the absolute amount of cadmium injected into the system was 11 ng and 17.5 ng, respectively).