Quantcast

Detection of hepatocellular carcinoma arising in cirrhotic livers: comparison of gadolinium- and ferumoxides-enhanced MR imaging.

Research paper by Y Y Tang, Y Y Yamashita, A A Arakawa, T T Namimoto, K K Mitsuzaki, Y Y Abe, K K Katahira, M M Takahashi

Indexed on: 01 Jun '99Published on: 01 Jun '99Published in: AJR. American journal of roentgenology



Abstract

We prospectively compared the detectability of hepatocellular carcinoma (HCC) arising in cirrhotic livers using dynamic gadolinium-enhanced fast low-angle shot (FLASH), ferumoxides-enhanced T2-weighted turbo spin-echo, and ferumoxides-enhanced T2*-weighted FLASH MR imaging.Fifty-three patients with HCC (32 men and 21 women) who were 33-86 years old (mean, 63 years old) were enrolled in a prospective MR study to assess hepatic lesions using both gadopentetate dimeglumine and ferumoxides. Dynamic gadolinium-enhanced imaging was obtained before and 30, 60, and 180 sec after rapid bolus injection of gadopentetate dimeglumine (0.1 mmol/kg). Ferumoxides-enhanced T2-weighted turbo spin-echo imaging and ferumoxides-enhanced T2*-weighted FLASH imaging were performed between 30 min and 2 hr after i.v. infusion of ferumoxides (10 micromol/kg). Images were analyzed qualitatively and quantitatively. A receiver operating characteristic curve study was performed to compare the diagnostic value of gadolinium-enhanced imaging with that of ferumoxides-enhanced imaging for the detection of HCC.Quantitative analysis revealed a significantly higher percentage of signal-intensity loss and higher liver-lesion contrast-to-noise ratio on ferumoxides-enhanced T2*-weighted FLASH imaging than on ferumoxides-enhanced T2-weighted turbo spin-echo imaging. The percentage of signal-intensity loss and liver-lesion contrast-to-noise ratio on ferumoxides-enhanced images was significantly higher in patients with mild liver cirrhosis (Child's class A) than in patients with severe liver cirrhosis (Child's class C). Qualitative analysis showed that dynamic gadolinium-enhanced images revealed significantly higher lesion conspicuity than did ferumoxides-enhanced T2-weighted turbo spin-echo images. According to receiver operating characteristic analysis, dynamic gadolinium-enhanced FLASH imaging achieved the highest sensitivity, and ferumoxides-enhanced T2*-weighted FLASH imaging was the second most sensitive. We found that ferumoxides-enhanced turbo spin-echo imaging was the least valuable technique for revealing HCC lesions. Gadolinium-enhanced imaging revealed more HCC lesions than did ferumoxides-enhanced imaging, particularly for lesions smaller than 2 cm in diameter.Ferumoxides-enhanced imaging revealed fewer findings, such as lesion conspicuity of HCCs arising in cirrhotic livers, than did gadolinium-enhanced FLASH imaging.