Design of barbiturate-nitrate hybrids that inhibit MMP-9 activity and secretion.

Research paper by Jun J Wang, Shane S O'Sullivan, Shona S Harmon, Ray R Keaveny, Marek W MW Radomski, Carlos C Medina, John F JF Gilmer

Indexed on: 18 Jan '12Published on: 18 Jan '12Published in: Journal of Medicinal Chemistry


We describe a new type of barbiturate-based matrix metalloproteinase (MMP) inhibitor incorporating a nitric oxide (NO) donor/mimetic group (series 1). The compounds were designed to inhibit MMP at enzyme level and to attenuate MMP-9 secretion arising from inflammatory signaling. To detect effects related to the nitrate, we prepared and studied an analogous series of barbiturate C5-alkyl alcohols that were unable to release NO (series 2). Both series inhibited recombinant human MMP-2/9 activity with nanomolar potency. Series 1 consistently inhibited the secretion of MMP-9 from TNFα/IL1β stimulated Caco-2 cells at 10 μM, which could be attributed to NO related effects because the non-nitrate panel did not affect enzyme levels. Several compounds from series 1 (10 μM) inhibited tumor cell invasion but none from the non-nitrate panel did. The work shows that MMP-inhibitory barbiturates are suitable scaffolds for hybrid design, targeting additional facets of MMP pathophysiology, with potential to improve risk-benefit ratios.