Derivatives on the isotropic tensor functions

Research paper by Guansuo Dui, Zhengdao Wang, Ming Jin

Indexed on: 01 Jun '06Published on: 01 Jun '06Published in: Science China : Physics, Mechanics & Astronomy


The derivative of the isotropic tensor function plays an important part in continuum mechanics and computational mechanics, and also it is still an opening problem. By means of a scalar response function f(Λi, I1, I2) and solving a tensor equation, this problem is well studied. A compact explicit expression for the derivative of the isotropic tensor function is presented, which is valid for both distinct and repeated eigenvalue cases. Throughout the analysis, the formulation holds for general isotropic tensor functions without need to solve eigenvector problems or determine coefficients. On the theoretical side, a very simple solution of a tensor equation is obtained. As an application to continuum mechanics, a base-free expression for the Hill’s strain rate is given, which is more compact than the existent results. Finally, with an example we compute the derivative of an exponent tensor function. And the efficiency of the present formulations is demonstrated.