Quantcast

Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents

Research paper by Rui Zhang, Honglak Lee, Dragomir Radev

Indexed on: 07 Nov '16Published on: 07 Nov '16Published in: arXiv - Computer Science - Computation and Language



Abstract

The goal of sentence and document modeling is to accurately represent the meaning of sentences and documents for various Natural Language Processing tasks. In this work, we present Dependency Sensitive Convolutional Neural Networks (DSCNN) as a general-purpose classification system for both sentences and documents. DSCNN hierarchically builds textual representations by processing pretrained word embeddings via Long Short-Term Memory networks and subsequently extracting features with convolution operators. Compared with existing recursive neural models with tree structures, DSCNN does not rely on parsers and expensive phrase labeling, and thus is not restricted to sentence-level tasks. Moreover, unlike other CNN-based models that analyze sentences locally by sliding windows, our system captures both the dependency information within each sentence and relationships across sentences in the same document. Experiment results demonstrate that our approach is achieving state-of-the-art performance on several tasks, including sentiment analysis, question type classification, and subjectivity classification.