Quantcast

Deficits of cortical oculomotor mechanisms in cerebellar atrophy patients.

Research paper by F F Filippopulos, T T Eggert, A A Straube

Indexed on: 20 Nov '12Published on: 20 Nov '12Published in: Experimental Brain Research



Abstract

Commonly, the cerebellum is not associated with cortical components of saccadic eye movement programming. The present study investigates cerebellar effects on visually guided saccades in reflexive tasks (step, gap, overlap) and on internally driven saccades in intentional tasks (anti, memory, short memory sequences of four targets) in five patients with isolated cerebellar atrophy. The cerebellar dysfunction led to impairments in both reflexive and intentional saccades. Cerebellar atrophy patients showed an increase in the gain variability and an increase in the saccade latency. Furthermore, in the memory and anti task, suppression and pro-saccade errors were more frequent in the atrophy group compared to the control group. In the sequence task, patients had difficulties reproducing all four target locations in the order of the displayed sequence. The high variability of the saccade gain is a common observation in cerebellar atrophy patients and can be explained by the general variability present in the saccadic system. The increase in the saccade latency could be due to a cerebellar contribution to cortical processes related to fixation and target selection preceding the initiation of a saccade. Furthermore, the frequent occurrence of saccade errors in the memory and anti task suggests a cerebellar involvement in frontal inhibition of unwanted reflexive saccades. The impaired reproduction of saccade sequences in atrophy patients points to a deficit in short-term memory processes. Thus, this study provides further evidence that the cerebellum is involved in different cortical mechanisms related to the control of saccadic eye movements.