Decreased methylation in the SNAI2 and ADAM23 genes associated with de-differentiation and haematogenous dissemination in breast cancers

Research paper by Lenka Kalinkova, Iveta Zmetakova, Bozena Smolkova, Gabriel Minarik, Tatiana Sedlackova, Viera Horvathova Kajabova, Zuzana Cierna, Michal Mego, Ivana Fridrichova

Indexed on: 07 Sep '18Published on: 06 Sep '18Published in: BMC Cancer


In breast cancer (BC), deregulation of DNA methylation leads to aberrant expressions and functions of key regulatory genes. In our study, we investigated the relationship between the methylation profiles of genes associated with cancer invasivity and clinico-pathological parameters. In detail, we studied differences in the methylation levels between BC patients with haematogenous and lymphogenous cancer dissemination.We analysed samples of primary tumours (PTs), lymph node metastases (LNMs) and peripheral blood cells (PBCs) from 59 patients with sporadic disseminated BC. Evaluation of the DNA methylation levels of six genes related to invasivity, ADAM23, uPA, CXCL12, TWIST1, SNAI1 and SNAI2, was performed by pyrosequencing.Among the cancer-specific methylated genes, we found lower methylation levels of the SNAI2 gene in histologic grade 3 tumours (OR = 0.61; 95% CI, 0.39–0.97; P = 0.038) than in fully or moderately differentiated cancers. We also evaluated the methylation profiles in patients with different cancer cell dissemination statuses (positivity for circulating tumour cells (CTCs) and/or LNMs). We detected the significant association between reduced DNA methylation of ADAM23 in PTs and presence of CTCs in the peripheral blood of patients (OR = 0.45; 95% CI, 0.23–0.90; P = 0.023).The relationships between the decreased methylation levels of the SNAI2 and ADAM23 genes and cancer de-differentiation and haematogenous dissemination, respectively, indicate novel functions of those genes in the invasive processes. After experimental validation of the association between the lower values of SNAI2 and ADAM23 methylation and clinical features of aggressive BCs, these methylation profiles could improve the management of metastatic disease.

More like this: