Quantcast

Damage characteristics and surface description of near-wall materials subjected to ultrasonic cavitation.

Research paper by Linzheng L Ye, Xijing X Zhu, Xumin X Wei, Shu'an S Wu

Indexed on: 24 May '20Published on: 24 May '20Published in: Ultrasonics Sonochemistry



Abstract

For the analysis of ultrasonic cavitation erosion on the surface of materials, the ultrasonic cavitation erosion experiments for AlCu4Mg1 and Ti6Al4V were carried out, and the changes of surface topography, surface roughness, and Vickers hardness were explored. Cavitation pits gradually expand and deepen with the increase of experiment time, and Ti6Al4V is more difficult to erode by cavitation than AlCu4Mg1. After experiments, the cavitation damage characteristics such as the single pit, the rainbow ring area, the fisheye pit, and some small pits were observed, which can be considered to be induced by a single micro-jet impact, ablation effect caused by the high temperature, micro-jet impingement with a sharp angle, and multibeam micro-jets coupling impact or negative pressure in the local area produced by micro-jet impact, respectively. The surface roughness and Vickers hardness of the material increase slowly after rapid growth at different points in time as the experiment time increases. With the increase of the ultrasonic amplitude, both of them first increase and then decrease after the ultrasonic amplitude is greater than 10.8 μm. The increases in surface roughness and Vickers hardness tend to decrease as the viscosity coefficient increases. Ultrasonic cavitation can cause submicron surface roughness and increase surface hardness by 20.36%, so it can be used as a surface treatment method. Copyright © 2020 Elsevier B.V. All rights reserved.