Quantcast

CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration.

Research paper by Gaosheng G Zhang, Jiuhui J Qu, Huijuan H Liu, Adrienne T AT Cooper, Rongcheng R Wu

Indexed on: 03 Apr '07Published on: 03 Apr '07Published in: Chemosphere



Abstract

CuFe2O4/activated carbon magnetic adsorbents, which combined the adsorption features of activated carbon with the magnetic and the excellent catalytic properties of powdered CuFe2O4, were developed using a simple chemical coprecipitation procedure. The prepared magnetic composites can be used to adsorb acid orange II (AO7) in water and subsequently, easily be separated from the medium by a magnetic technique. CuFe2O4/activated carbon magnetic adsorbents with mass ratio of 1:1, 1:1.5 and 1:2 were prepared. Magnetization measurements, BET surface area measurements, powder XRD and SEM were used to characterize the prepared adsorbents. The results indicate that the magnetic phase present is spinel copper ferrite and the presence of CuFe2O4 did not significantly affect the surface area and pore structure of the activated carbon. The adsorption kinetics and adsorption isotherm of acid orange II (AO7) onto the composites at pH 5.2 also showed that the presence of CuFe2O4 did not affect the adsorption capacity of the activated carbon. The thermal decomposition of AO7 adsorbed on the activated carbon and the composite was investigated by in situ FTIR, respectively. The results suggest that the composite has much higher catalytic activity than that of activated carbon, attributed to the presence of CuFe2O4. The variation of the adsorption capacity of the composites after several adsorption-regeneration cycles has also been studied.