Cryptic chytridiomycosis linked to climate and genetic variation in amphibian populations of the southeastern United States.

Research paper by Ariel A AA Horner, Eric A EA Hoffman, Matthew R MR Tye, Tyler D TD Hether, Anna E AE Savage

Indexed on: 28 Apr '17Published on: 28 Apr '17Published in: PloS one


North American amphibians have recently been impacted by two major emerging pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Ranavirus (Rv). Environmental factors and host genetics may play important roles in disease dynamics, but few studies incorporate both of these components into their analyses. Here, we investigated the role of environmental and genetic factors in driving Bd and Rv infection prevalence and severity in a biodiversity hot spot, the southeastern United States. We used quantitative PCR to characterize Bd and Rv dynamics in natural populations of three amphibian species: Notophthalmus perstriatus, Hyla squirella and Pseudacris ornata. We combined pathogen data, genetic diversity metrics generated from neutral markers, and environmental variables into general linear models to evaluate how these factors impact infectious disease dynamics. Occurrence, prevalence and intensity of Bd and Rv varied across species and populations, but only one species, Pseudacris ornata, harbored high Bd intensities in the majority of sampled populations. Genetic diversity and climate variables both predicted Bd prevalence, whereas climatic variables alone predicted infection intensity. We conclude that Bd is more abundant in the southeastern United States than previously thought and that genetic and environmental factors are both important for predicting amphibian pathogen dynamics. Incorporating both genetic and environmental information into conservation plans for amphibians is necessary for the development of more effective management strategies to mitigate the impact of emerging infectious diseases.