Quantcast

Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 ('Iressa'), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells.

Research paper by Elena E Di Gennaro, Marcella M Barbarino, Francesca F Bruzzese, Sonya S De Lorenzo, Michele M Caraglia, Alberto A Abbruzzese, Antonio A Avallone, Pasquale P Comella, Francesco F Caponigro, Stefano S Pepe, Alfredo A Budillon

Indexed on: 25 Feb '03Published on: 25 Feb '03Published in: Journal of Cellular Physiology



Abstract

High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.