Quantcast

Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation.

Research paper by Dueng-Yuan DY Hueng, Ching-Hsuan CH Hsieh, Yu-Chen YC Cheng, Wen-Chiuan WC Tsai, Ying Y Chen

Indexed on: 10 Jan '17Published on: 10 Jan '17Published in: The Journal of Nutritional Biochemistry



Abstract

Cordycepin, a nucleoside-derivative-isolated form Cordyceps militaris, has been reported to suppress tumor cell proliferation and cause apoptosis. This study investigates the effect of cordycepin on the migration of human glioblastoma cells. Cordycepin suppressed the migration of the human glioblastoma cell lines U87MG and LN229 in transwell and wound healing assays. Cordycepin decreased protein expression of integrin α1, focal adhesion kinase (FAK), p-FAK, paxillin and p-paxillin. The lysosomal inhibitor NH4Cl blocked the ability of cordycepin to inhibit focal adhesion protein expression and glioma cell migration. In addition, the protein phosphatase inhibitors calyculin A and okadaic acid blocked the cordycepin-mediated reduction in p-Akt, p-FAK and migration. Hematoxylin and eosin staining of mouse xenografts demonstrated that cordycepin reduced brain tumor size in vivo. In conclusion, cordycepin inhibited migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. This pathway may be a useful target for clinical therapy in the future.