Quantcast

Continuum and micromechanics treatment of constraint in fracture

Research paper by Robert H. Dodds, C. Fong Shih, Ted L. Anderson

Indexed on: 01 Nov '93Published on: 01 Nov '93Published in: International Journal of Fracture



Abstract

Two complementary methodologies are described to quantify the effects of crack-tip stress triaxiality (constraint) on the macroscopic measures of elastic-plastic fracture toughness J and Crack-Tip Opening Displacement (CTOD). In the continuum mechanics methodology, two parameters J and Q suffice to characterize the full range of near-tip environments at the onset of fracture. J sets the size scale of the zone of high stresses and large deformations while Q scales the near-tip stress level relative to a high triaxiality reference stress state. The material's fracture resistance is characterized by a toughness locus Jc(Q) which defines the sequence of J-Q values at fracture determined by experiment from high constraint conditions (Q∼0) to low constraint conditions (Q<0). A micromechanics methodology is described which predicts the toughness locus using crack-tip stress fields and critical J-values from a few fracture toughness tests. A robust micromechanics model for cleavage fracture has evolved from the observations of a strong, spatial self-similarity of crack-tip principal stresses under increased loading and across different fracture specimens. We explore the fundamental concepts of the J-Q description of crack-tip fields, the fracture toughness locus and micromechanics approaches to predict the variability of macroscopic fracture toughness with constraint under elastic-plastic conditions. Computational results are presented for a surface cracked plate containing a 6:1 semielliptical, a=t/4 flaw subjected to remote uniaxial and biaxial tension. Crack-tip stress fields consistent with the J-Q theory are demonstrated to exist at each location along the crack front. The micromechanics model employs the J-Q description of crack-front stresses to interpret fracture toughness values measured on laboratory specimens for fracture assessment of the surface cracked plate.