Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding.

Research paper by A H AH Patel, J J Wood, F F Penin, J J Dubuisson, J A JA McKeating

Indexed on: 22 Nov '00Published on: 22 Nov '00Published in: The Journal of general virology


We compared the ability of two closely related truncated E2 glycoproteins (E2(660)) derived from hepatitis C virus (HCV) genotype 1a strains Glasgow (Gla) and H77c to bind a panel of conformation-dependent monoclonal antibodies (MAbs) and CD81. In contrast to H77c, Gla E2(660) formed disulfide-linked high molecular mass aggregates and failed to react with conformation-dependent MAbs and CD81. To delineate amino acid (aa) regions associated with protein aggregation and CD81 binding, several Gla-H77c E2(660) chimeric glycoproteins were constructed. Chimeras C1, C2 and C6, carrying aa 525-660 of Gla E2(660), produced disulfide-linked aggregates and failed to bind CD81 and conformation-dependent MAbs, suggesting that amino acids within this region are responsible for protein misfolding. The presence of Gla hypervariable region 1 (aa 384-406) on H77 E2(660), chimera C4, had no effect on protein folding or CD81 binding. Chimeras C3 and C5, carrying aa 384-524 or 407-524 of Gla E2(660), respectively, were recognized by conformation-dependent MAbs and yet failed to bind CD81, suggesting that amino acids in region 407-524 are important in modulating CD81 interaction without affecting antigen folding. Comparison of Gla and H77c E2(660) aa sequences with those of genotype 1a and divergent genotypes identified a number of variant amino acids, including two putative N-linked glycosylation sites at positions 476 and 532. However, introduction of G476N-G478S and/or D532N in Gla E2(660) had no effect on antigenicity or aggregation.