Quantcast

Computations in Large N Matrix Mechanics

Research paper by Charles Schwartz

Indexed on: 18 Jul '99Published on: 18 Jul '99Published in: High Energy Physics - Theory



Abstract

The algebraic formulation of Large N matrix mechanics recently developed by Halpern and Schwartz leads to a practical method of numerical computation for both action and Hamiltonian problems. The new technique posits a boundary condition on the planar connected parts X_w, namely that they should decrease rapidly with increasing order. This leads to algebraic/variational schemes of computation which show remarkably rapid convergence in numerical tests on some many- matrix models. The method allows the calculation of all moments of the ground state, in a sequence of approximations, and excited states can be determined as well. There are two unexpected findings: a large d expansion and a new selection rule for certain types of interaction.