Quantcast

Computational study of the aminolysis of 2-benzoxazolinone.

Research paper by Sonia S Ilieva, Boris B Galabov, Djamaladdin G DG Musaev, Keiji K Morokuma

Indexed on: 26 Apr '03Published on: 26 Apr '03Published in: Journal of Organic Chemistry



Abstract

Three possible mechanisms (zwitterionic, neutral stepwise, and neutral concerted) of the ring-opening reaction of 2-benzoxazolinone (BO) upon aminolysis with methylamine were studied at the B3LYP/6-31G* level. In the gas phase, the neutral concerted mechanism is shown to be most favorable, which proceeds via a rate-determining barrier of 28-29 kcal/mol. The transition state, CTS, associated with this barrier is a four-centered one, where 1,2-addition of the N[bond]H of methylamine to the C[bond]O of BO ring occurs. The rate-determining barrier of the neutral stepwise pathway is found to be ca. 42 kcal/mol. The inclusion of solvent effects by a polarizable continuum model (PCM) does not change the conclusions based on the gas-phase study; the barrier at CTS is reduced to 20, 20, and 22 kcal/mol in water, ethanol, and acetonitrile, respectively.