Quantcast

Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortium Program Study.

Research paper by C C Visco, Y Y Li, Z Y ZY Xu-Monette, R N RN Miranda, T M TM Green, Y Y Li, A A Tzankov, W W Wen, W-m WM Liu, B S BS Kahl, E S G ES d'Amore, S S Montes-Moreno, K K Dybkær, A A Chiu, W W Tam, et al.

Indexed on: 23 Mar '12Published on: 23 Mar '12Published in: Leukemia



Abstract

Gene expression profiling (GEP) has stratified diffuse large B-cell lymphoma (DLBCL) into molecular subgroups that correspond to different stages of lymphocyte development-namely germinal center B-cell like and activated B-cell like. This classification has prognostic significance, but GEP is expensive and not readily applicable into daily practice, which has lead to immunohistochemical algorithms proposed as a surrogate for GEP analysis. We assembled tissue microarrays from 475 de novo DLBCL patients who were treated with rituximab-CHOP chemotherapy. All cases were successfully profiled by GEP on formalin-fixed, paraffin-embedded tissue samples. Sections were stained with antibodies reactive with CD10, GCET1, FOXP1, MUM1 and BCL6 and cases were classified following a rationale of sequential steps of differentiation of B cells. Cutoffs for each marker were obtained using receiver-operating characteristic curves, obviating the need for any arbitrary method. An algorithm based on the expression of CD10, FOXP1 and BCL6 was developed that had a simpler structure than other recently proposed algorithms and 92.6% concordance with GEP. In multivariate analysis, both the International Prognostic Index and our proposed algorithm were significant independent predictors of progression-free and overall survival. In conclusion, this algorithm effectively predicts prognosis of DLBCL patients matching GEP subgroups in the era of rituximab therapy.

More like this: