Colloidal-electrochemical fabrication strategies for functional composites of linear polyethylenimine.

Research paper by Z Z ZZ Wang, A A Clifford, J J Milne, R R Mathews, I I Zhitomirsky

Indexed on: 13 Nov '19Published on: 19 May '19Published in: Journal of Colloid and Interface Science


Colloidal-electrochemical fabrication strategies have been developed for the deposition of linear polyethylenimine (LPEI) composite materials. Electrophoretic deposition (EPD) allowed for the fabrication of composite films containing MnO and ZnO nanoparticles, as well as advanced flame retardant materials, such as halloysite nanotubes and memory-type Al-Mg-Zr complex hydroxide (AMZ) in the matrix of the water-insoluble LPEI. A liquid-liquid extraction method has been designed for the agglomerate-free processing of AMZ particles. Efficient extraction was achieved using decylphosphonic acid as an extractor. A conceptually new polymer complex (PC)-EPD method has been developed, which is based on the use of LPEI-metal ion complexes. Proof-of-concept studies involved the fabrication of LPEI-Ni(OH) and LPEI-MnOx nanocomposites. The composites showed valuable flame retardant and charge-storage properties. The analysis of basic EPD and PC-EPD mechanisms as well as complexing properties of LPEI has driven the development of new strategies for the fabrication of organic composites. Hemoglobin was used as a model protein for the fabrication of composite films. Another important finding was the fabrication of composites, containing cyclodextrin, which is a unique carrier of various functional organic molecules. EPD and PC-EPD are versatile methods, which allow for the deposition of novel LPEI based composites containing various functional materials. Copyright © 2019 Elsevier Inc. All rights reserved.