Collisional dynamics around binary black holes in galactic centers

Research paper by Marc Hemsendorf, Steinn Sigurdsson, Rainer Spurzem

Indexed on: 19 Aug '02Published on: 19 Aug '02Published in: Astrophysics


We follow the sinking of two massive black holes in a spherical stellar system where the black holes become bound under the influence of dynamical friction. Once bound, the binary hardens by three-body encounters with surrounding stars. We find that the binary wanders inside the core, providing an enhanced supply of reaction partners for the hardening. The binary evolves into a highly eccentric orbit leading to coalescence well beyond a Hubble time. These are the first results from a hybrid ``self consistent field'' (SCF) and direct Aarseth N-body integrator (NBODY6), which combines the advantages of the direct force calculation with the efficiency of the field method. The code is designed for use on parallel architectures and is therefore applicable to collisional N-body integrations with extraordinarily large particle numbers (> 10^5). This creates the possibility of simulating the dynamics of both globular clusters with realistic collisional relaxation and stellar systems surrounding supermassive black holes in galactic nuclei.